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BOUNDED ERROR SCHEMES FOR THE WAVE EQUATION ON COMPLEX DOMAINS* 

SAUL ABARBANELt, ADI DITKOWSK1*, AND AMIR YEFET* 

Abstract. This paper considers the application of the method of boundary penalty terms ("SAT") to 

the numerical solution of the wave equation on complex shapes with Dirichlet boundary conditions. A theory 

is developed, in a semi-discrete setting, that allows the use of a Cartesian grid on complex geometries, yet 

maintains the order of accuracy with only a linear temporal error-bound. A numerical example, involving 

the solution of Maxwell's equations inside a 2-D circular wave-guide demonstrates the efficacy of this method 

in comparison to others (e.g. the staggered Yee scheme) - we achieve a decrease of two orders of magnitude 

in the level of the L2-error. 

Key words. Maxwell's equations, wave equation, finite difference-time domain, error bounds, boundary 

conditions, complex geometries, staircasing 
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1. Introduction. Hyperbolic systems of P.D.E.'s describing physical situations such as electro-magnetism, 

acoustics, elastic waves, etc, may under many circumstances be cast as wave equations for the various field 

components. 

One class of problems is that of solving numerically the Dirichlet problem on complex shapes, e.g., inside 

wave guides. For sufficiently non-simple geometries, the option of transforming the problem to body-fitted 

coordinates is not always a viable option, especially in three space dimensions. There are other options, such 

as using Cartesian grids and approximating the body shape via "staircasing", "diagonal split cell model", 

etc (see for example Chapter 10 in reference [4]). It is well known that these devices are not very efficacious, 

particularly in the high frequency regime. We shall demonstrate that "staircasing" can fail even for low 

frequencies. 

In this paper we consider the application of the method of boundary penalty terms ("SAT", see references 

[1], [2], [3]) to the numerical solution of the wave equation in a finite domain with Dirichlet boundary 

conditions. 

In Section 2 we develop the theory that allows us to use a Cartesian grid on complex geometries and yet 

maintain the order accuracy with a linear temporal error-bound. 

In Section 3 we construct a second order accurate scheme that fulfills the conditions imposed by the 

theory presented in Section 2. 

Section 4 is devoted to a numerical example - the solution of the transverse magnetic (TM) Maxwell's 

equations [4] between two concentric circles. (This configuration might be considered as a cross-section of a 

very long wave-guide.) This problem is solved using four different numerical algorithms. Two of them solve 

the first order system with "staircasing" - the Yee staggered scheme [6] and a 4th order spatially staggered 

scheme due to Türkei and Yefet [5].   The other two solve the wave equation directly on a non-staggered 

"This research was supported by the National Aeronautics and Space Administration under NASA Contract Nos. NAS1- 

19480 and NAS1-97046 while the author was in residence at the Institute for Computer Applications in Science and Engineering 

(ICASE), NASA Langley Research Center, Hampton, VA 23681-2199. 
*S. Abarbanel was also supported in part by the Air Force Office of Scientific research Grant No. AFOSR-F49620-95-1-0074, 

and by the Department of Energy under grant DOE-DE-FG02-95ER25239.  School of Mathematical Sciences, Department of 

Applied Mathematics, Tel Aviv University, Tel Aviv, ISRAEL. 
■•■School of Mathematical Sciences, Department of Applied Mathematics, Tel Aviv University, Tel Aviv, ISRAEL. 



Cartesian grid, one with the SAT formulation and one without. All three "standard" (non-SAT) algorithms 

have very large errors; the SAT algorithm has errors that are at least two order of magnitude smaller. 

Summary and conclusions, and ideas for future work are presented in Section 5. 

2. Theoretical Framework of the Method. In reference [1], [2] and [3], it was shown how the case 

of a one-dimensional P.D.E. can be used as a building block for the multidimensional case for constructing 

error-bounded algorithms over complex geometries with Dirichlet boundary condition. We therefore start 

with the following one-dimensional problem: 

(2.1) 

(2.0a) 

(2.0b) 

(2.0c) 

(2.0d) 

cPu 
dt2 

d2u 
+ f{x,t);    TL<x<TR,    t>0 

9a;2 

u(x, 0) = UQ(X) 

—u(x,0) = uto(x) 

u(TL,t)=gL(t) 

u(TR,t)=gR(t) 

and/(z,i) 6 C2. 

Let us discretize (2.1) spatially on the uniform grid presented in Figure 2.1. Note that the boundary 

points do not necessarily coincide with x\ and XN- Set Xj+\ — Xj = h, 1 < j < N — 1; xi — TL = 7x,/i, 

0 < 7L < 1; TR - xN = 7ß/i, 0 < 7ä < 1. 

-lh 
AX=h 

\h 

r
R 
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FIG. 2.1. One dimensional grid. 
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Since, unlike the cases discussed in [1], [2], equation (2.1) has a second time derivative, attempts to 

apply naively the methods presented there fail. The reason is that if we follow the procedure used there and 

write the following discrete approximation to (2.1), 

d2 

(2.2) 
dt2 u = Du + f (t) + Te 

where u is the projection of the exact solution u(x,t) onto the grid, i.e. u(xj,t) = Uj(t) = u(i); and write 

the numerical scheme 

d2v 
— =[Dv- TL{ALW - gL) - TR(ARV - gÄ)] + f (t)  , (2.3) 



then the equation for the error vector  e = u - v becomes 

(2.4) ^ = Me + T" 

In the above, v is the numerical approximation to u, and 

(2.5) M = D- TLAL - TRAR . 

D is a differentiation matrix of the proper order of accuracy that does not use boundary values. The matrices 

AL and AR are defined by the relations 

(2.6) ALu = gL - TL,    ARu = gR-TR, 

i.e., each row in AL{AR) is composed of the coefficients extrapolating u to its boundary value öL(#.R) at 

TL{^R) to within the order of accuracy. (The error is then TL(TR).) The diagonal matrices TL and TR are 

given by 

TL = diag(TZ/1, TL2, ■ ■ ■, TLN);    TR = diag(rfll, TR2, • • •, TRN) . 

The constrain on the construction of the A's, r's and D is that M in (2.4) be negative definite. The negative 

defmiteness of M is a necessary condition for extending the 1-D theory to the multidimensional case (see 

[1],[3]). Also in (2.4) 

(2.7) T = Te - TLTL - TRTR = (Ti,T2, • • • ,Tm, ■ ■ ■ ,TN)T . 

If the matrix M can be diagonalized*, then 

(2.8) M = Q~XKQ 

with the diagonal matrix, A, having the eigenvalues of M. Defining fi = Q e, equation (2.4) becomes 

(2.9) =A/i + f. 

This is an un-coupled system of O.D.E's. The general solution for the mth equation is: 

1      /"* 
ßm(t) - c^e^' + cm2e-

Ät + -= /   sinh (y/xZ(t - s))fm(s)ds . 
V^m JO 

Recalling that at t = 0,  e =  et = 0 (i.e.   \x= \it — 0 at t = 0), the solution of (2.9) becomes: 

1      /"' 
(2.10) Um® = -7f= /   Tm(s)sinh [y/\^(t - s)]ds . 

V^m JO 

Note that unless all the eigenvalues of M are real and non-positive some of the \/Ä^?s will have a positive 

real part, in which that case at least one of the pm's may grow exponentially in time. In order to prevent 

this, we have to demand that M, in addition to being negative definite, also possess only real eigenvalues. 

'Extensive numerical evidence has shown that theM in [1],[2] (i.e. representing the second derivative to^ and 2nd order 

accuracy, respectively) has distinct eigenvalues and hence is diagonalizable. 



Furthermore, in order to use the 1-D scheme as a building block for multidimensional schemes, M should 

be built in a way that verifies that the property of real negative eigenvalues carries over to the multi- 

dimensional differentiating matrix. One way to achieve this goal is to construct M as a negative-definite 

symmetric matrix. Then an estimate on the error bound can be derived directly from the solution (2.10), 

\ßm(t)\ < 
^ 

-T     t 

where fmM = max0<s<t |Tro(s)|. Then, for a normalized Q, 

(2.11) Mil <-||TM||*, 
Co 

where c0 = minm=i,...,./v \/|Am|. Therefore || e|| grows at most linearly with t. 

This result, of a linear temporal bound on the error-norm, can also be derived by resorting to energy 

method (see [3]), instead of directly from the solution. 

Also, as mentioned before, the construction of multi-dimensional case 

l^-v»«+ /(*,*) 
on complex shapes is completely analogous to the method indicated in [1], [3]. 

3.  Construction of the Scheme. This section is devoted to the task of constructing a symmetric 

negative definite matrix M for the case of a second order accurate finite difference algorithm. 

Let 

D 
1 

1 -2 1 0 

1 -2 1 0 

0 1 -2 1 

0 0 1 -2 1 

1 -2 

1 

1 

-2 

1 

1 

0 

1 

-2 

-2 

0 

0 

1 

1 

+ 

Cl 

C3 

CN-2 

CJV-I 

0 0 0 0 

1 -3 3 -1 

1 4 -6 4 -1 

-1 4 -6 4 -1 

-1 3 -3 1 

0 0 0 0 



(3.1) -c 

0 0 0 

0 1 -2 1 

1 2 0 -2 1 

-1 2 0 -2    1 

-1 2 -1    0 

0 0 0    0 

where 

(3.2) 

and 

(3-3) 

Note, that as in [2] and [3], we had to resort to using connectivity terms, the last two matrices in (3.1). 

Cfc = C2 +    Ar_3    (fc _ 2) 

CjV-l - c2 

N-3 

(3.4) AL 

i(2 + 7L)(l + 7L)    -7L(2 + 7L)    \{lL+ll)    0    ...    0 

-(2 + 7L)(1 + 7L)    -7i(2 + 7i)    2(7L+7^    0    ...    0 

(3.5) Af 

0    ...    0    i(7fl + 7fl)    -1R(2 + JR)    ^(2 + JR)(1 + JR) 

0    ...    0    \{lR + l2
R)    -7fl(2 + 7ß)    ;J(2 + 7ä)(1 + 7ä) 

(3.6) TL = ■r2diag[TL1,TL2,ri,3,0,...,0,0]; 

(3.7) TR = 72 diaS [0> 0) • • ■ . °. TRN. 2'
T

RN. I i TRN] ; 
/l2 

In order to make the matrix M = D — TL^L - TRJ4# symmetric we choose: 

C2 

CjV-1 

TL2 — 

(1 - 1L) 1L 

2 

(1 ~ 1R) 1R 
2 

3 - 7L ~ 2 7L TLI 

1+7L 



(3-8) rL3 _  

3 - JR - 2 JR TRN 
TR* 

TRA 

l + 7fi 
-2 + 7fl + 7flTRjv 

* + lR 
TLr, TRN > 4 . 

(3.9) 

The proof that the symmetric matrix M is indeed negative-definite is given in the Appendix to this 

paper. 

Note also that instead of solving (2.3) directly as a 2nd order O.D.E. system in time, one can solve 

_— = [Dv - TL(ALV - gL) - TR(ARV - gR)} + f 
at 
dv 
— = w . 
dt 

(3.10) 

The number of 'variables' has increased from N to 27V but one gains in the simplicity of the time integration. 

4. Numerical Example. We consider the dimensionless Maxwell's equation for transverse magnetic 

field (TM, see [4]) in two space dimensions: 

(4.1) 

(4.2) 

<43) dt - dx 

where Hx and Hy are the x and y components of the magnetic vector, H, and E is the electric field in the 

z-direction. The set (4.1)-(4.3) is to be solved in the space between two concentric circles, | < r < |. We 

consider the case of perfectly conducting boundaries. Thus the boundary conditions are given by 

(4.4) E(lo,t)=0 

(4.5) E(le,t) = o. 

We choose the following initial conditions (note the polar coordinates r, 9): 

(4.6) E(r,9,Q)= cos 9 [Jx (u>r) + aYi (wr)] 

Hy{r,9,0) = - sm29{^[J1(u>r) + aY^wr)} 

(4.7) -\ [J0(ur) - J2(ur) + a Y0(wr) - a Y2{ur]\ } 

Hx(r, 6,0) = ^-^ \Jx{wr) + a Yx{wr)\ 
LOT 

sin2 9 
(4.8)  — [J0(wr) - J2(u>r) + a Y0(cjr) - a Y2(wr)] 

where the Jn's and the Yn
:s are Bessel functions of the first and second kind of order n, respectively. Also, 

(4.9) a ^ 1.76368380110927;        w ^ 9.813695999428405 . 

dE dHy dHx 

dt ~ dx dy 
dHx dE 

dt dy 
dHy _ dE 



The exact solution of the IBV problem (4.1)-(4.8) is given by: 

(4.10) E(r, 6, t) = cos{tot + 9) [Ji(wr) + a Yi(wr-)] 

Hy(r,e,t) = cos 9 cos(w£ + (9)[Ji(wr) + a Yi(wr)] 

(4.11) +5 cos0sin(wt + 6) [J0(ujr) - J2(u>r) + a YQ(wr) - a Y2(ur)] 

Hx(r, d,t) = — cos 9 cos(wt + 9) [Ji(wr) + a Yi(wr)] 

(4.12) -isin<9sin(wi + 6») [J0(tor) - J2(ojr) + a YQ{ur) - a Y2{wr)} 

We note that we can extract from (4.1)-(4.3) a wave equation for the electric field E, 

d2E _ d*E_     c?E_ 

The boundary conditions on E in (4.13) are given by (4.4)-(4.5). The initial condition E(r, 9,0) is given by 

(4.6). We need an additional initial condition on Et, which we obtain by differentiating (4.10), namely 

(4.14) Et(r,9,0) = -usmO[J1(wr)+aY1(wr)]  . 

Four numerical schemes were used to solve the problem: 

(i) The Yee scheme [6]. This second order accurate scheme is staggered both in space and time. This 

entails putting initial conditions of Hx and Hy at At/2 rather than at t = 0. These initial conditions 

are derived from the exact solution. The numerical solution is carried out on the "staircased" domain 

shown in Figure 4.1. 

(ii) A modification of the Yee scheme (designated Ty(2,4)), see [5].   This one has 4th order spatial 

accuracy and 2nd order in time. The stagger and the "staircased" domain are maintained as before, 

(iii) The SAT algorithm for the wave equation described in Sections 2 and 3.   The grid used for the 

numerical integration is shown in the right side of Figure 4.1. The time evolution is done by a 4th 

order Runge-Kutta method, 

(iv) An algorithm which formally looks like the SAT in (iii), but is applied to the "staircased" domain 

of Figure 4.1 (rather than SAT one). To order 0(h2), this is equivalent to using a standard spatial 

central differencing scheme with the nodal points at edges of the domain given the boundary value 

zero. The time integration is done as in the case (iii). 

We first present the L2 error in E for all four schemes at t = 1 and t = 10 for the cases Ax = Ay — h = 

1/40, h = 1/80 and h = 1/160, see Table 1. At was 2/3 h for the Yee scheme, h/18 for the Ty(2,4) scheme 

and h/b for the SAT schemes. 

It is immediately apparent from the table that the SAT-error (scheme iii) is at least 2 orders of magnitude 

smaller than that of the other three algorithms at all the various times and grid spacings. 

Since the non-SAT schemes have errors which are unacceptably large we do not show details of their 

temporal behavior. The SAT algorithm (scheme iii) has an L2 error which grows in time as shown in Figure 

4.2. We see that this temporal growth is bound by a linear curve, whose slope depends on h. We note that 

for all reasonable dimensionless time the error is quite small, especially for h < 1/80. 

5.  Conclusions and Discussion. 

(i) It seems quite clear from the evidence that the failure of the non-SAT schemes is due to the fact 

that "staircasing" misrepresents the shape of the body. In the SAT scheme, on the other hand, the 

penalty terms take account of the true shape. 



FIG. 4.1.  The "staircased" domain (left) and the SAT grid (right), h = 1/40. 

t=l 

i     Yee 

ü     Ty(2,4) 

iii    SAT 

iv    Staircased      0.1022 

h = 1/40 h = 1/80 h = 1/160 

0.4322 0.3635          0.1742 

0.4038 0.3347           0.1579 

0.001203 0.0001705 1.5019e-05 

0.05041 0.01936 

*= 10 

i      Yee 

ii     Ty(2,4) 

iii    SAT 

h = 1/40     h = 1/80     h = 1/160 

0.5101         0.4364 0.6683 

0.2642          0.7079 0.7243 

0.008435    0.0008354 8.2707e-05 

iv    Staircased      0.7929         0.4735 0.7829 
TABLE 4.1 

The L<2 error. 

(ii) The numerical results validate the theoretical predictions of the temporal behavior of the L2 norm 

of the error. 

(iii) Grosso-modo the CPU time per node is of the same order for all schemes. 

(iv) The results from Table 1 and Figure 4.2 seem to indicate that the scheme (iii) converges as h?, 

although the algorithm has a truncation error of order h2. We do not understand this pleasant 

anomaly, although it is possible that even with h = 1/160 we are not yet in the asymptotic conver- 

gence regime. 
(v) In the future, we would like to apply the SAT methodology directly to hyperbolic systems such as 

(4.1)-(4.3). The theory is not complete yet. 
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FIG. 4.2. SAT, Li error vs. time. 

Appendix. We decompose the matrix M, defined in (2.5) and (3.1) to (3.8) as follows: 

(5.1) M = — [aMi + (1 - a)M2 + M3 + M4+ Mb] 

where: 

(5.2) Mi 

2 1 

1 -2 

1 

1 

-2 1 

1 -2 

1 

1 

-2 

1 

1 

-2 

(5.3) M2 

0   0 0 

0    0 0 

0    0 -1 

1 

1 

-2 1 

1 -2 1 

0 1 -1 

0 

0 

0    0 

0    0 

0   0 



M3 

0 0 0 

0 -1 1 

0 1 -2 1 

1 -2 

1 

0 

1    0 

-1    0 

0    0 

(5.4) 

C2 

C3 

CN-2 

CN-1 

0 0 0 

0 -1 1 

0 1 -2 1 

1 -2 

1 

0 

1    0 

-1    0 

0    0 

(5.5) M4 = 

1,1 «V 
1,2 m4' 
2,2 m4' 
2,3 

m. .1,3 

m 
tf3 

3,3 

0 

where: 

and 

ml1 = 1 + 2a - 
(l + 7L)(2 + 7L)rLl 

m 

m 

1.2 _ 
4     — 

l,: 
4 

2,2 

-2 - a + 7L (2 + 7L) TX^ 

i,3      ,      7L(
1
+7L)TZ,1 r?v   = 1 - 

m„ 

•4 

2,3 
4 

,3.3 

2a + 
77i _ 4 (1 + 7L)-7L

2
(2 + 7L)(1 + 4TLI) 

2(1 + 7L) 

37L  ,  7L 
1 - a — + -r- + 7L  TLi 

2a + 

2 2 
-4 + 7L

2
 - 7L3 - 7L2 (1 + 7iQ r£i 

2(2 + 7L) 

10 



(5.6) 

where: 

MR 

0 

m* N-2.N-2 N-l,N-2     ^N,N-2 m= 

m. 

TOc 
N.N-2 m N,N-1 

nit. 

0    mN~^N~2   ^N~1'N-1    ^N'N~1 

m. .N,N 

m, TV.N" l + 2a- 
(1 + 7fi) (2 + 7ß) TRK 

m N,N-1 

mR 
N,N-2 

-2 - a + 7R (2 + 7fl) rfliV 

..      7ß(1 + 7fi)rßi» 

m N-1,AT-1 2a- 

m; N-l.N-2 
5 

77fl ~ 4 (1 + 7|) - 1R2 (2 + 7fl) (1 + 4Ttt„) 
2(1 + 7B) 

37ß  ,  7ß2   , ^ 2„. 

m N-2.N-2 
■5 2a + 

-4- ■7ß 7ß3 - 7ß2(1 + 7ß)Tßw 

2 (2 + 7Ä) 

The matrix Mi is negative-definite and bounded away from 0 by h?-K2 by the argument leading to eq. 

(2.4.31), see appendix to chapter 2 in [3]. M2 is non-positive definite, see eq. (2.4.34) and (2.4.35) in that 

appendix. Prom (3.2), (3.3) and (3.8) follows that ck > 0, k = 1,..., N, therefore, the matrix M3 is non- 

positive. For a given value of 0 < a < 1, rLl and TRN can be found such that the matrices M4 and M5 will 

be non-positive, for all 71, and JR. For example: for a = 1/10, rLl = TRN = 4; for a = 1/2, TLI = TRN = 9 

and for a. — 8/10, TL^ = TRN = 24. This completes the proof that M is indeed a negative-definite matrix, 

bounded away from 0 by an2. Therefore the norm of the error vector || e || can grow at most linearly in 

time, see equation (2.11). 

REFERENCES 

[1] S. ABARBANEL AND A. DITKOWSKI, Asymptotically Stable Fourth-Order Accurate Schemes for the 

Diffusion Equation on Complex Shapes, J. Comput. Phys., 133, No. 2,1997. Also, Multi-Dimensional 

Asymptotically Stable 4th-Order Accurate Schemes for the Diffusion Equation. ICASE Report No. 

96-8, February 1996. 
[2] S. ABARBANEL AND A. DITKOWSKI, Multi-dimensional asymptotically stable schemes for advection- 

diffusion equations, ICASE Report No. 96-47. To appear in Computers and Fluids. 

[3] A.  DITKOWSKI, Bounded-Error Finite Difference Schemes for Initial Boundary  Value Problems on 

Complex Domains, Thesis, Department of Applied Mathematics, School of Mathematical Sciences, 

Tel Aviv University, Tel Aviv, Israel, 1997. 

[4] A. TAFLOVE,  Computational Electrodynamics,   The Finite-Difference Time-Domain Method, Artech 

House, Inc., 1995. 

11 



[5] E. TURKEL AND AMIR YEFET, Fourth Order Accurate Compact Implicit Method for the Maxwell 

Equations, to appear in IEEE Trans. Antennas Propagat., 1998. 

[6] K. S. YEE, Numerical solution of initial boundary value problems involving Maxwell's equations in 

isotropic media, IEEE Trans. Antennas Propagat., AP-14, No. 4, 1966, pp. 302-307. 

12 


